

© Copyright 2006 by the American Chemical Society and the American Society of Pharmacognosy

Full Papers

Chiral Decalins: Preparation from Oleanolic Acid and Application in the Synthesis of (-)-9-epi-Ambrox

Hai-Jun Yang, ${ }^{\dagger,{ }^{\dagger}}$ Bo-Gang Li, ${ }^{\dagger}$ Xiao-Hua Cai, ${ }^{\dagger, \dagger}$ Hua-Yi Qi, ${ }^{\dagger}$ Ying-Gang Luo, ${ }^{\dagger}$ and Guo-Lin Zhang*, ${ }^{\dagger}$
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China

Received April 8, 2006

Abstract

A novel and versatile process was developed to prepare the trans-decalins $\Delta^{9(11)}-3 \beta$-acetoxysclareolide (2) and $\Delta^{9(11)}$ 3β-acetoxy-8-epi-sclareolide (3), respectively, with 4a-methoxycarbonyl-2,7,7-trimethyl-1-oxo-cis-decalin-2-ene (4) and its C-3 hydroxyl derivative $\mathbf{5}$ from oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, $\mathbf{1}$). Three key steps were (a) introduction of the AcO-12 group and the C-9,C-11 double bond at ring C of methyl 3β-acetoxyolean-12-en-28-oate (8) to afford the diene, methyl 3,12-diacetoxyolean-9(11),12-dien-28-oate (11); (b) photolytic cleavage of the C-8,C-14 bond in the diene to give an acetoxy-substituted triene 14; and (c) oxidative cleavage of the triene or its hydrolyzed α, β-unsaturated ketone product with m-CPBA/TsOH to give the cis- and trans-decalins 2-5. $\Delta^{9(11)}-3 \beta$-Acetoxysclareolide (2) was stereospecifically reduced to give 3β-acetoxy-9-epi-sclareolide (23), from which (-)-9-epi-ambrox (7) was synthesized.

Decalin is one of the most prevalent structural units present in natural products possessing diverse and significant biological activities ${ }^{1}$ and olfactory and fixative properties. ${ }^{2}$ To date, numerous syntheses of these kinds of compounds have been accomplished. ${ }^{1,3}$ Most of the syntheses are based on transformation of terpenes such as sclareolide, ${ }^{4}$ abietic acid, ${ }^{5}$ labdanolic acid, ${ }^{6}$ sclareol, ${ }^{7}$ manool, ${ }^{8}$ larixol, ${ }^{9}$ and communic acid ${ }^{10}$ or well-established synthetic chiral materials such as Wieland-Miescher ketone. ${ }^{11}$ Nevertheless, almost all these semisynthetic materials are comparatively rare and expensive, bear no functional groups on ring $\mathrm{A}(\mathrm{C}-1$ to $\mathrm{C}-4)$, possess a Me- 8β functionality, and may not be employed to synthesize compounds with functional groups on ring A or those with a Me8α group. Thus, it would be highly advantageous to obtain chiral decalins suitable for the versatile syntheses of these compounds with or without functional groups on ring A and those with either $\mathrm{Me}-8 \alpha$ or -8β substituents.

Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, $\mathbf{1}$), a pentacyclic triterpene, is abundant as a natural resource. ${ }^{12}$ Both the A / B and D / E rings of $\mathbf{1}$ constitute decalin ring systems. The

[^0]framework of the A / B rings, a 3β-hydroxy-4,4,8,10-tetramethyl-trans-decalin, could be used as a versatile precursor for a large number of natural products. ${ }^{1}$ In addition, the cis-decalin fragment of the D / E rings could also be transformed into triterpenoids, such as achilleol B ${ }^{13}$ and camelliols A and B. ${ }^{14}$ Thus, it would be of importance to generate simultaneously cis- and trans-decalins derived from the A / B and D / E fragments of $\mathbf{1}$ by cleavage of ring C in a facile manner.
Ring C of $\mathbf{1}$ was converted into the triene G1, which could not be directly cleaved with different oxidants. Indirectly, the C-11,C12 double bond in $\mathbf{G 2}$ was cleaved with $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4}$ to give $\mathbf{G 3}$ and G4 in a total yield of 30% from $\mathbf{G 1}$ (Scheme 1a). ${ }^{15}$ Compounds G3 and G4 are unstable, and G3 possesses no chiral centers at $\mathrm{C}-8$ and $\mathrm{C}-9$. The yield for the cleavage of the $\mathrm{C}-9, \mathrm{C}-11$ bond is even poorer with low selectivity. ${ }^{15}$ To date, there have been no examples reported concerning the cleavage of the $\mathrm{C}-12, \mathrm{C}-13$ bond.

Enol acetates can be transformed into ketols or α-acetoxy ketones via enol acetate epoxide ${ }^{16}$ or hydrolyzed to ketones and then they might undergo a Baeyer-Villiger reaction with peracids. It was presumed that AcO-11 or AcO-12 trienes could thus be easily cleaved and the cleavage of the C-9,C-11, C-11,C-12, or C-12,C13 bonds could probably be selectively realized. In this study, we have explored a route to cleave ring C of $\mathbf{1}$, which involves

Scheme 1. Key Steps of Ring C Cleavage of Oleanolic Acid

Chart 1. Ring C Cleaved Products $2-5$ of Oleanolic Acid, (-)-Ambrox (6), and (-)-9-epi-Ambrox (7)

Scheme 2. Synthesis of Acetoxy-Substituted Dienes ${ }^{a}$

[^1]oxidative cleavage of the acetoxy-substituted trienes II or their hydrolyzed dienone products III (Scheme 1b). Cleavage of the AcO-12 triene or its hydrolyzed product was carried out, and selective access was realized to the trans-decalin $\Delta^{9(11)}-3 \beta$ acetoxysclareolide (2) or its 8 -epimer, $\Delta^{9(11)}-3 \beta$-acetoxy-8-episclareolide (3), respectively, with cis-decalins 4 and 5 (Chart 1).

As one of the most valuable animal perfumes, ambergris possesses unique olfactive and fixative properties, ${ }^{2 \mathrm{bb}}$ which is related principally to the presence of (-)-ambrox (6) (Chart 1). To date, several syntheses of 6 have been reported. ${ }^{17}$ Studies on the configuration-odor relationship revealed that (-)-9-epi-ambrox (7) ${ }^{2 a, b, 18}$ possesses the strongest scent and lowest threshold concentration (0.15 ppb) among all stereoisomers of (-)-ambrox (6). However synthetic methods of compound 7 are few and need to be improved in view of long reaction routes, low yields, or rigorous
conditions. ${ }^{2 \mathrm{a}, 19}$ In this study, (-)-9-epi-ambrox (7) was synthesized starting from $\Delta^{9(11)}-3 \beta$-acetoxysclareolide (2).

Results and Discussion

Cleavage of Ring C of Oleanolic Acid (1). The α, β-unsaturated ketone $\mathbf{1 0}$ was prepared via oxidation of $\mathbf{8}^{20}$ with $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HCOOH}$ or $\mathrm{O}_{3}{ }^{21}$ and then dehydrogenation with $\mathrm{Br}_{2} / \mathrm{HBr}^{22}$ in acetic acid. In the enol acetylation of $\mathbf{1 0}$ with $\mathrm{Ac}_{2} \mathrm{O}$, different catalysts such as $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{TsOH},{ }^{23} \mathrm{PPA}, \mathrm{CF}_{3} \mathrm{COOH}$, pyridine, ${ }^{24}$ and $\mathrm{CH}_{3} \mathrm{COONa}^{24 b, 25}$ were tested. It was found that $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{TsOH}$ was effective, and the enol acetate 11 was obtained in 87% yield (Scheme 2), whereas long reaction times were needed and low conversion rates were obtained when pyridine or $\mathrm{CH}_{3} \mathrm{COONa}$ was used. When synthesizing the enol acetate of the Δ^{12}-11-oxo compound $\mathbf{1 2},{ }^{26}$ no reaction occurred when pyridine and $\mathrm{CH}_{3} \mathrm{COONa}$ were used and a very low

Scheme 3. Photochemical Ring Opening of Acetoxy-Substituted Diene $\mathbf{1 1}^{a}$

${ }^{a}$ Reagents and conditions: (a) $h v$ (high-pressure mercury lamp), Pyrex, $\mathrm{CH}_{3} \mathrm{COOEt}, \mathrm{rt}, 94 \%$; (b) $h v$ (high-pressure mercury lamp), quartz, $\mathrm{CH}_{3} \mathrm{COOEt}$, $\mathrm{rt}, 49 \%$ (14) and 35% (15); (c) (i) $\mathrm{KOH}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$, rt, (ii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 91%; (d) (i) $\mathrm{KOH}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$, rt, (ii) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 87%.
conversion rate was observed when $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{TsOH}$ was employed at room temperature. Using $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{TsOH}$ as catalyst at $80^{\circ} \mathrm{C}$, ring A was transformed into a five-membered ring and the double bond was rearranged to give $\mathbf{1 3}$ (Scheme 2). A similar example using PCl_{5} has also been documented. ${ }^{27}$

In ring C of 11, the conjugated double bonds and transdisposition between $\mathrm{Me}-8 \beta$ and $\mathrm{Me}-14 \alpha$ allowed a six-electronsystem antarafacial reaction, ${ }^{28}$ which led to the cleavage of the bond between C-8 and C-14 (Scheme 3). Irradiation of $\mathbf{1 1}$ in $\mathrm{CH}_{3} \mathrm{COOEt}$ in a Pyrex flask under argon using a 500 W high-pressure Hg lamp gave the $(8 Z, 11 E, 13 E)$-triene $\mathbf{1 4}$ in 94% yield. The ring C opening took place by a conrotatory photochemical electrocyclic reaction similar to that evident in the transformation of ergosterol to previtamin D. ${ }^{29}$ This process could be accomplished in different solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and EtOH . Interestingly, when 11 was irradiated in a quartz flask, 14 and its isomer ($8 Z, 11 Z$,$13 E)$-triene 15 were obtained in 49% and 35% yields, respectively. The two isomers could interconvert when irradiated in a quartz flask, indicating that compound $\mathbf{1 5}$ is a further photochemical product of 14. The different results in Pyrex and quartz flasks are probably due to the light of different wavelengths allowed to penetrate. In fact, both compounds are unstable when irradiated in a quartz flask, and thus long reaction times should be avoided to prevent further reactions.

The spectroscopic data of $\mathbf{1 4}$ and $\mathbf{1 5}$ did not provide conclusive evidence for their configurations. X-ray crystallographic analysis of $\mathbf{1 4}$ confirmed the configuration of $\mathbf{1 4}$ as a $(8 Z, 11 E, 13 E)$-triene (Figure 1). ${ }^{30}$ Acetylation of the hydrolyzed products of $\mathbf{1 4}$ or $\mathbf{1 5}$ with $\mathrm{Ac}_{2} \mathrm{O}$ gave the same product, $\mathbf{1 6}$ (Scheme 3), and thus, the structure of compound $\mathbf{1 5}$ was indirectly established as a ($8 Z, 11 Z$,$13 E$-triene.
A [1,7]H sigmatropic shift in the transformation of provitamin D_{2} to vitamin $\mathrm{D}_{2}{ }^{29}$ and a $[1,5] \mathrm{H}$ sigmatropic migration of a triterpenoid cis-triene ${ }^{15}$ have been reported. However, no H sigmatropic shift reactions occurred when compound $\mathbf{1 4}$ or $\mathbf{1 5}$ was irradiated with ultraviolet light. It is probably because the serious distortion of these molecules as shown from the crystal structure of $\mathbf{1 4}$ (Figure 1) destroys the conjugations of the trienes and prevents the molecules from any antarafacial or suprafacial [1,7]H or [1,5]H sigmatropic migration. The unconjugated triene is also revealed by the fact that $\mathbf{1 4}$ possesses no ultraviolet absorption in the region of a normal conjugated triene.

The oxidation of compound 14 with $\mathrm{KMnO}_{4}, \mathrm{KMnO}_{4} / \mathrm{NaIO}_{4}$, or O_{3} gave complex mixtures. Enol acetates can be transformed into ketols or α-acetoxy ketones via enol acetate epoxides ${ }^{16}$ or hydrolyzed to ketones, and then they might undergo a Baeyer-

Figure 1. ORTEP diagram of triene 14.
Villiger reaction with peracids; thus, m-CPBA was chosen for the cleavage of compound 14 (Scheme 4). Oxidation of 14 with m-CPBA in the presence of NaHCO_{3} or phosphate buffer (pH 7.5) gave epoxide $\mathbf{1 7}$ or $\mathbf{1 8}$ as the major product without triene cleavage. Direct oxidation of $\mathbf{1 4}$ with m-CPBA gave compounds $\mathbf{2}, 4,5$, and diepoxide 18, as well as lactone 19. Compound 19 was the major product when 14 was oxidized with $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HCOOH}$ at $50^{\circ} \mathrm{C}$. The configurations of $\mathbf{2}, \mathbf{1 7}$, and $\mathbf{1 9}$ were confirmed by X-ray crystallographic analysis. ${ }^{30}$ The triene cleaved products $\mathbf{2 , 4}$, and $\mathbf{5}$ were detected even if $\mathbf{1 4}$ was oxidized directly with less than 1 molar equiv of m-CPBA. On the basis of products from oxidation of $\mathbf{1 4}$ with m-CPBA or m-CPBA and NaHCO_{3}, the triene cleavage is presumed to be an acid-catalyzed process. Different acids including $\mathrm{TsOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$, and $\mathrm{CF}_{3} \mathrm{COOH}$ were tested. It was found that a catalytic amount of TsOH could largely inhibit the production of diepoxide 18 and lactone 19 and obviously improve the reaction. Other oxidants such as $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{CH}_{3} \mathrm{COOH}$ and t - BuOOH gave no satisfactory results. Here, the introduction of an acetoxy group at $\mathrm{C}-12$ and application of $\mathrm{m}-\mathrm{CPBA} / \mathrm{TsOH}$ made cleavage of the C-12,C-13 bond of the triene facile and selective. At the same time, oxidation of $(8 Z, 11 \mathrm{Z}, 13 E)$-triene $\mathbf{1 5}$ with m-CPBA/TsOH rendered the same products $\mathbf{2}, \mathbf{4}$, and 5 (Scheme 4).

Significantly, oxidation of $\mathbf{1 6}$ with $\mathrm{m}-\mathrm{CPBA} / \mathrm{TsOH}$ gave 3, an 8 -epimer of $\mathbf{2}$, and $\mathbf{2}, \mathbf{4}$, and $\mathbf{5}$ (Scheme 5). The ratio of $\mathbf{3} / \mathbf{2}$ was 5:1, as determined from the ${ }^{1} \mathrm{H}$ NMR spectrum. Slow recrystallization of the mixture of $\mathbf{3}$ and $\mathbf{2}$ from n-hexane/acetone (8:1) gave crystals with two different shapes, which could be manually separated to give pure 3 and 2. Similar to 14, compound $\mathbf{1 6}$ was oxidized with m-CPBA in the presence of NaHCO_{3} to give epoxide $\mathbf{2 0}$ or 21. The configurations of $\mathbf{3}$ and 21 were determined by X-ray crystallographic analysis. ${ }^{30}$

Compounds $\mathbf{2}$ and $\mathbf{3}$ possess a 3β-acetoxy-4,4,8,10-tetramethyl-trans-decalin system and consequently are versatile synthons for the syntheses of natural products with Me- 8α or -8β groups and with or without functional groups on ring A. Compounds $\mathbf{4}$ and 5, with a cis-decalin framework, are also important intermediates for the syntheses of tricyclic triterpenoids, such as achilleol B^{13} and camelliols A and B. ${ }^{14}$

Synthesis of (-)-9-epi-Ambrox (7) from 2. Compound 2 possesses substitution patterns and configurations similar to those of (-)-9-epi-ambrox (7) and could be used as a starting material for the synthesis of 7 (Scheme 6). The key step for the synthesis of $\mathbf{7}$ from $\mathbf{2}$ was to reduce the C-9,C-11 double bond stereospecifically. Unsaturated lactone 2 was reduced with Mg in $\mathrm{CH}_{3} \mathrm{OH}$ to give 22. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of 22 were quite different from those of 3β-hydroxysclareolide. ${ }^{31}$ Acetylation of $\mathbf{2 2}$ with $\mathrm{Ac}_{2} \mathrm{O}$ gave the product $\mathbf{2 3}$, which could also be obtained directly from 2 in high yields by reduction with $\mathrm{NaBH}_{4} / \mathrm{NiCl}_{2}$. $6 \mathrm{H}_{2} \mathrm{O}^{32}$ or by hydrogenation with H_{2} in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$.

Scheme 4. Oxidation of Trienes 14 and $\mathbf{1 5}^{a}$

${ }^{a}$ Reagents and conditions: (a) m-CPBA (1 equiv), $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 74 \%$; (b) m-CPBA (2 equiv), $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 56%; (c) m-CPBA (1 equiv), NaHCO 3 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 71 \%$; (d) m-CPBA(3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 51% (2), 23% (4), 22% (5), 8% (18), and 16% (19); (e) $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HCOOH}^{2}, \mathrm{CHCl} 3,50{ }^{\circ} \mathrm{C}, 60 \%$; (f) m-CPBA(3 equiv), TsOH (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 82 \%$ (2), 57% (4), and 8% (5); (g) m-CPBA(3 equiv), TsOH (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 76 \%$ (2), 52% (4), and 10% (5).

Scheme 5. Oxidation of Dienone $\mathbf{1 6}^{a}$

${ }^{a}$ Reagents and conditions: (a) m-CPBA (3 equiv), TsOH (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $69 \%(\mathbf{3}+\mathbf{2}, \mathbf{3} / \mathbf{2}=5: 1), 49 \%(\mathbf{4})$ and $7 \%(\mathbf{5}) ;$ (b) m-CPBA (1 equiv), NaHCO_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 84 \%$; (c) m-CPBA (2 equiv), $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 45 \%$; (d) m-CPBA (1 equiv), $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 57%.

The X-ray crystallographic analysis of $\mathbf{2 3}$ suggested that $\mathbf{2 2}$ is 3β -hydroxy-9-epi-sclareolide. ${ }^{30}$

Reductive removal of a sulfonate group with LAH can transform sulfonate to the corresponding hydrocarbon. ${ }^{33}$ However, reduction of sulfonate $\mathbf{2 4}$ or $\mathbf{2 5}$ with LAH in THF and then cyclization with $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}^{34}$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ did not afford the target compound 7 but its 3β-hydroxylated derivative, 3β-hydroxy- 9 -epi-ambrox (26). Cleavage of the $\mathrm{S}-\mathrm{O}$ bond occurred probably because the $\mathrm{C}-\mathrm{O}$ bond of the sulfonate was sterically hindered. ${ }^{35}$ At the same time, compound 26 was also obtained via reduction of 23 with LAH in THF and then cyclization with $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$. The configuration of 26 was confirmed by X-ray crystallographic analysis. ${ }^{30}$

Compound 26 was mesylated with methanesulfonyl chloride to give the mesylate 27 in 93% yield (Scheme 6). Then, $\mathrm{Zn} / \mathrm{NaI}^{35}$ was used to reductively remove the mesyloxy group in dimethoxyethane (DME) under reflux, but a mixture of (-)-9-epi-ambrox (7), 28, and 29 was obtained. However, removal of the mesyloxy group in 27 with LiCl in DMF at $100^{\circ} \mathrm{C}$ rendered the alkene $\mathbf{2 8}$ in 80% yield. Hydrogenation of $\mathbf{2 8}$ gave the target compound $\mathbf{7}$ quantitatively.

An efficient and convenient process was developed to prepare the trans-decalin $\Delta^{9(11)} 3 \beta$-acetoxysclareolide (2) or its 8 -epimer, $\Delta^{9(11)}-3 \beta$-acetoxy-8-epi-sclareolide (3), respectively, with 4a-meth-oxycarbonyl-2,7,7-trimethyl-1-oxo-cis-decalin-2-ene (4) and its C-3 hydroxyl derivative $\mathbf{5}$ from oleanolic acid (1). This process relies
on the introduction of an AcO-12 group and a C-9,C-11 double bond at ring C of methyl 3-acetoxyolean-12-en-28-oate (8), photolytic cleavage of the $\mathrm{C}-8, \mathrm{C}-14$ bond in the resulting diene, methyl 3,12-diacetoxyolean-9(11),12-dien-28-oate (11), and oxidative cleavage of the resulting acetoxy-substituted triene $\mathbf{1 4}$ or its hydrolyzed product 16, with a novel method using m-CPBA/TsOH. All of the decalins, especially the trans ones, are useful and versatile precursors for the syntheses of important natural products possessing a decalin framework, with Me- 8α or Me- 8β groups and with or without functional groups on ring A. The stereospecific reduction of $\Delta^{9(11)}-3 \beta$-acetoxysclareolide (2) gave 3β-acetoxy- 9 -epi-sclareolide (23). Compound 23, an important synthon with $9 S$ configuration, is difficult to prepare from other natural compounds. From 23, (-)-9-epi-ambrox (7) was synthesized.

Experimental Section

General Experimental Procedures. Melting points were determined with an X-6 melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 341 automatic polarimeter. UV and IR spectra were obtained on a Lambda 35 spectrometer and a Perkin-Elmer FT-IR spectrometer, respectively. NMR spectra were recorded on a Bruker Advance 600 spectrometer with TMS as internal standard. Electrospray ionization mass spectra (ESIMS) were acquired on a Finnigan $L C Q^{\text {DECA }}$ mass spectrometer, and electron ionization mass spectra (EIMS) were recorded on a VG7070E mass spectrometer. HRESIMS were carried out on a BioTOF-Q mass spectrometer. Silica gel (200-300 mesh) was used for column chromatography. Precoated plates (silica gel GF254, $0-40 \mu \mathrm{~m}$) activated at $110^{\circ} \mathrm{C}$ for 2 h were used for TLC detected with an UV lamp, I_{2}, and an 8% ethanol solution of phosphomolybolic acid or a 5% ethanol solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Commercial reagents were used without purification. All solvents including petroleum ether $\left(60-90^{\circ} \mathrm{C}\right)$ were distilled prior to use. Anhydrous THF was distilled from Na and benzophenone.

Methyl 3,12-Diacetoxyolean-9(11),12-dien-28-oate (11). To а solution of compound $\mathbf{1 0}(1 \mathrm{~g}, 1.9 \mathrm{mmol})$ in acetic anhydride $(10 \mathrm{~mL})$ were added a drop of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and a catalytic amount of $\mathrm{TsOH}(20 \mathrm{mg})$. The reddish reaction mixture was stirred at room temperature for 5 h and then poured into a mixture of ice/water. The solid precipitate was filtered, washed with saturated aqueous NaHCO_{3} and water, dried, and purified over a silica gel column (eluted by petroleum ether/AcOEt, 20:1) to render $11(0.939 \mathrm{~g}, 87 \%)$. Compound 11 (colorless cubic crystals): mp $165.8-167.9^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+194.4$ (c $0.29, \mathrm{CHCl}_{3}$); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 278(3.96) \mathrm{nm}$; IR (KBr) $v_{\text {max }} 2946,2867,1729,1656,1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta 5.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 4.51(1 \mathrm{H}, \mathrm{dd}, J=11.6,4.7 \mathrm{~Hz}, \mathrm{H}-3), 3.63(3 \mathrm{H}$, $\left.\mathrm{s},-\mathrm{COOCH}_{3}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.8 \mathrm{~Hz}, \mathrm{H}-18), 2.16(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{COO}-12$), 2.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-3$), $1.22,1.07,1.06,0.95,0.92$, $0.90,0.87$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 177.9$, $171.0,169.2,156.5,140.8,129.0,114.9,80.4,51.7,51.0,45.3,43.0$,

Scheme 6. Synthesis of (-)-9-epi-Ambrox (7) ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Mg}, \mathrm{CH}_{3} \mathrm{OH}$, reflux, 74%; (b) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 95 \%$; (c) MsCl or TsCl, pyridine, $0^{\circ} \mathrm{C}$, 96% (24) and 78% (25); (d) (i) LAH, THF, N_{2}, reflux, (ii) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{NO}_{2}, 73 \%$ from 24; (e) $\mathrm{NaBH}_{4}, \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$ to rt, 97%; (f) (i) $\mathrm{LAH}, \mathrm{LiCl}, \mathrm{THF}, \mathrm{N}_{2}$, reflux, (ii) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{NO}_{2}, 77 \%$; (g) MsCl, pyridine, $0^{\circ} \mathrm{C}, 93 \%$; (h) Zn , NaI, DME, reflux, 42% (28), 14% (29), and 28% (7); (i) LiCl, DMF, $100{ }^{\circ} \mathrm{C}, 80 \%$; (j) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(4 \mathrm{MPa}$), 100%.
$41.4,40.4,38.8,37.9,36.7,33.8,32.8,32.7,32.1,32.0,30.5,28.1$, $27.0,25.0,24.1,23.4,23.3,21.3,20.7,20.2,20.0,18.0,16.7$; ESIMS $m / z, 1158.9[2 \mathrm{M}+\mathrm{Na}]^{+}(64), 591.3[\mathrm{M}+\mathrm{Na}]^{+}(100) ;$ HRESIMS m / z $[\mathrm{M}+\mathrm{Na}]^{+} 591.3665$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NaO}_{6}, 591.3656$).

Methyl 3,12-Diacetoxy-8,14-seco-olean-8Z,11E,13E-trien-28-oate (14). A solution of compound $\mathbf{1 1}(100 \mathrm{mg})$ in ethyl acetate $(20 \mathrm{~mL})$ in a Pyrex flask under argon was irradiated using a 500 W high-pressure Hg lamp at room temperature until compound 11 disappeared (monitored by TLC). Then, the solvent was evaporated under reduced pressure to give a syrup, which was purified over a silica gel column (petroleum ether/AcOEt, 25:1) to afford $\mathbf{1 4}(94 \mathrm{mg}, 94 \%)$ as a colorless oil. An oily solution of $\mathbf{1 4}$ in a small amount of petroleum ether/AcOEt (25:1) stood for several days, and colorless cubic crystals were obtained. Compound 14 (colorless cubic crystals): mp $128.5-129.7^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}$ $+170.6\left(c 0.14, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \nu_{\max } 2946,2863,1732,1455,1366$, 1247, 1207, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 5.78(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-11), 4.54(1 \mathrm{H}, \mathrm{dd}, J=11.2,3.7 \mathrm{~Hz}, \mathrm{H}-3), 3.65\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right)$, $2.86\left(1 \mathrm{H}\right.$, br s), 2.10 and 2.07 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-3$ and $\mathrm{CH}_{3} \mathrm{COO}-$ 12), 1.62 and 1.60 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-26$ and $\mathrm{H}-27), 0.91(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.88(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $178.0,171.0,169.0,147.1,134.2,133.3,132.6,132.0,119.0,80.8$, 51.7, 51.2, 44.9, 41.9, 38.8, 37.8, 36.6, 35.4, 34.9, 33.9, 33.0, 30.6, $29.9,28.2,24.6,24.3,22.3,22.1,21.9,21.6,21.4,18.6,16.7$; ESIMS $m / z 607.4[\mathrm{M}+\mathrm{K}]^{+}(5), 591.3[\mathrm{M}+\mathrm{Na}]^{+}(100), 568.5[\mathrm{M}+\mathrm{H}]^{+}$ (3), $509.2\left[\mathrm{M}+\mathrm{H}-\mathrm{CH}_{3} \mathrm{COOH}\right]^{+}(17), 449.3$ (26); HRESIMS m/z $[\mathrm{M}+\mathrm{Na}]^{+} 591.3642$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NaO}_{6}, 591.3656$).

Methyl 3 β-Acetoxy-12-oxo-8,14-seco-olean-8Z,13E-dien-28-oate (16). (1) Starting from 14: To a solution of compound 14 (100 mg , $0.18 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ were added $\mathrm{KOH}(15 \mathrm{mg}, 0.27 \mathrm{mmol})$ and water $(0.2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 12 h . Then, water $(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with water and brine and dried over MgSO_{4}. After removal of the MgSO_{4} via filtration, pyridine (0.5 mL) and acetic anhydride $(0.2 \mathrm{~mL})$ were added directly. The resulting solution was stirred at room temperature for 5 h and then washed with water, $5 \% \mathrm{HCl}(\mathrm{aq})$, saturated aqueous NaHCO_{3}, and brine, dried over MgSO_{4}, and filtered. Then, the solvent was evaporated under reduced pressure to give a residue, which was purified over a silica gel column (petroleum ether/AcOEt, $25: 1)$ to afford compound $\mathbf{1 6}(84 \mathrm{mg}, 91 \%)$.
(2) Starting from 15 with the same procedure as (1), yield: 87%.

Compound 16: colorless cubic crystals; mp $145.6-146.7^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}$ $+159.2\left(c 0.25, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 244(3.74) \mathrm{nm} ; \mathrm{IR}$
(KBr) $\nu_{\max } 2956,1736,1719,1685,1628,1243 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 4.53(1 \mathrm{H}, \mathrm{dd}, J=11.7,4.6 \mathrm{~Hz}, \mathrm{H}-3), 3.71(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{COOCH}_{3}\right), 3.47$ and 3.19 (each 1 H , d, $J=19.0 \mathrm{~Hz}, \mathrm{H}-11$), 3.08 $(1 \mathrm{H}, \mathrm{dd}, J=12.9,3.2 \mathrm{~Hz}, \mathrm{H}-18), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-\right), 1.62(3 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-27), 1.44(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-26), 0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.90$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 204.9$, $177.8,170.8,139.0,133.0,132.9,129.8,80.6,51.8,50.3,44.9,42.2$, $39.9,37.9,37.7,34.2,34.1,33.7,33.4,32.5,31.8,30.6,29.9,28.0$, 23.9, 23.8, 22.6, 21.3, 20.4, 20.0, 19.9, 18.6, 16.6; ESIMS $m / z 565.3$ $[\mathrm{M}+\mathrm{K}]^{+}(2), 549.4[\mathrm{M}+\mathrm{Na}]^{+}(100), 489.3$ (26); HRESIMS m/z [M $+\mathrm{Na}]^{+} 549.3527$ (calcd for $\left.\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{NaO}_{5}, 549.3550\right)$.
$\Delta^{9(11)}-3 \beta$-Acetoxysclareolide (2), cis-Decalin 4, and cis-Decalin 5. (1) Starting from 14: To a solution of $\mathbf{1 4}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added a catalytic amount of TsOH and then $\mathrm{m}-\mathrm{CPBA}(75 \%)(120 \mathrm{mg}, 0.52 \mathrm{mmol})$. The reaction mixture was stirred for 12 h at room temperature. The resulting solution was washed with saturated aqueous NaHSO_{3}, saturated aqueous NaHCO_{3}, and brine, dried over MgSO_{4}, filtered, and evaporated to dryness. The residue was separated over a silica gel column (petroleum ether/AcOEt, 25:1, and then petroleum ether/AcOEt, 4:1) to afford compounds $2(44 \mathrm{mg}, 82 \%)$, $4(25 \mathrm{mg}, 57 \%)$, and $5(4 \mathrm{mg}, 8 \%)$.
(2) Starting from 15 with the same procedure as (1): $\mathbf{2}$ (75\%), $\mathbf{4}$ (52\%), and 5 (10%).

Compound 2: colorless cubic crystals; mp 171.1-171.9 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}$ -118.8 (c 0.14, CHCl_{3}); UV (MeOH) $\lambda_{\max }(\log \epsilon) 215$ (4.12) nm; IR (KBr) $\nu_{\max } 3006,2982,2955,2932,2864,1757,1731,1628,1374$, $1254,1027,955 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 5.56(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-11), 4.50(1 \mathrm{H}, \mathrm{dd}, J=10.9,4.5 \mathrm{~Hz}, \mathrm{H}-3), 2.33(1 \mathrm{H}, \mathrm{dt}, J=12.1$, $2.8 \mathrm{~Hz}, \mathrm{H}-7), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-\right), 1.84-1.91(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and H-6), $1.76-1.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-2), 1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.58$ (3H, s, H-16), $1.52(1 \mathrm{H}, \mathrm{dt}, J=12.8,3.7 \mathrm{~Hz}, \mathrm{H}-7), 1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$, $1.04(1 \mathrm{H}, \mathrm{dd}, J=12.1,2.3 \mathrm{~Hz}, \mathrm{H}-5), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 0.92(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-13) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 183.3(\mathrm{C}-9), 172.0(\mathrm{C}-12), 170.7$ $\left(\mathrm{CH}_{3} \mathrm{COO}-\right), 109.9(\mathrm{C}-11), 86.9(\mathrm{C}-8), 79.5(\mathrm{C}-3), 54.7(\mathrm{C}-5), 40.4$ (C-7), 39.3 (C-10), 38.5 (C-4), 34.9 (C-1), 28.1 (C-13), 25.3 (C-16), $23.2(\mathrm{C}-2), 21.1\left(\mathrm{CH}_{3} \mathrm{COO}-\right), 19.2(\mathrm{C}-6), 18.2(\mathrm{C}-15), 16.6(\mathrm{C}-14)$; ESIMS m/z $329.2[\mathrm{M}+\mathrm{Na}]^{+}(63), 307.2[\mathrm{M}+\mathrm{H}]^{+}(100)$; HRESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 329.1726$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{4}, 329.1723$).

Compound 4: white amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+8.3$ (c 0.05, $\mathrm{AcOEt}),[\alpha]^{20}{ }_{578}+10.4(c 0.05, \mathrm{AcOEt}),[\alpha]^{20}{ }_{546}+8.3(c 0.05, \mathrm{AcOEt})$, $[\alpha]^{20}{ }_{436}-50.0\left(c 0.05\right.$, AcOEt), $[\alpha]^{20}{ }_{365}-547.9$ (c 0.05, AcOEt); UV $(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 236(3.84) \mathrm{nm}$; IR (KBr) $v_{\max }$ 2951, 2864, 1731, 1673, 1453, 1255, 1200, $1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$
$6.60(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-3), 3.65\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right), 3.02(1 \mathrm{H}, \mathrm{dd}$, $J=13.6,4.2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 2.69(1 \mathrm{H}, \mathrm{dt}, J=18.7,2.1 \mathrm{~Hz}, \mathrm{H}-4), 2.56$ $(1 \mathrm{H}, \mathrm{dd}, J=18.7,5.9 \mathrm{~Hz}, \mathrm{H}-4), 1.74(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 1.70(1 \mathrm{H}, \mathrm{dd}, J=$ $13.7,4.6 \mathrm{~Hz}, \mathrm{H}-5), 1.63(1 \mathrm{H}, \mathrm{dt}, J=13.7,3.5 \mathrm{~Hz}, \mathrm{H}-5), 1.46(1 \mathrm{H}, \mathrm{dd}$, $J=13.8,4.4 \mathrm{~Hz}, \mathrm{H}-6), 1.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.26$ ($1 \mathrm{H}, \mathrm{t}, J=13.5 \mathrm{~Hz}, \mathrm{H}-8$), 0.99, 0.96 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$ and $\mathrm{H}-12$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 201.1(\mathrm{C}-1), 177.2(\mathrm{C}-10), 141.8(\mathrm{C}-3)$, $134.4(\mathrm{C}-2), 52.4\left(-\mathrm{COOCH}_{3}\right), 47.9(\mathrm{C}-4 \mathrm{a}), 46.1$ (C-8a), 38.3 (C-8), 34.4 (C-6), 32.5 (C-11 or 12), 29.7 (C-5), 29.6 (C-7), 27.8 (C-4), 24.2 (C-11 or 12), $16.0(\mathrm{C}-9)$; ESIMS $m / z 289[\mathrm{M}+\mathrm{K}]^{+}(2), 251[\mathrm{M}+$ $\mathrm{H}]^{+}(100), 191.1\left[\mathrm{M}+\mathrm{H}-\mathrm{HCOOCH}_{3}\right]^{+}(94) ;$ HRESIMS $m / z[\mathrm{M}+$ $\mathrm{Na}]^{+} 273.1457$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{3}, 273.1461$).

Compound 5: white amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-43.7$ (c 0.05, $\mathrm{AcOEt}),[\alpha]^{20}{ }_{578}-45.8$ ($c 0.05$, AcOEt $),[\alpha]^{20}{ }_{546}-56.3$ (c 0.05, AcOEt), $[\alpha]^{20}{ }_{436}-160.4$ (c 0.05, AcOEt), $[\alpha]^{20}{ }_{365}-718.7$ (c 0.05, AcOEt); UV $(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 244(4.03) \mathrm{nm}$; IR (KBr) $\nu_{\max } 3438$, 2953, 2920, $1728,1668,1628,1291,1203 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $3.68\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right), 3.10(1 \mathrm{H}$, br d, $J=18.5 \mathrm{~Hz}, \mathrm{H}-4), 3.06(1 \mathrm{H}$, dd, $J=13.7,4.4 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 2.93(1 \mathrm{H}, \mathrm{d}, J=18.5 \mathrm{~Hz}, \mathrm{H}-4), 1.87(3 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-9), 1.76(1 \mathrm{H}, \mathrm{dt}, J=13.7,4.8 \mathrm{~Hz}, \mathrm{H}-5), 1.64(1 \mathrm{H}, \mathrm{dt}, J=14.3$, $3.4 \mathrm{~Hz}, \mathrm{H}-5), 1.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.42(1 \mathrm{H}, \mathrm{dd}, J=13.3,4.2 \mathrm{~Hz}, \mathrm{H}-6)$, $1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.25(1 \mathrm{H}, \mathrm{t}, J=13.5 \mathrm{~Hz}, \mathrm{H}-8), 0.99,0.97$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$ and $\mathrm{H}-12) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 198.0(\mathrm{C}-1)$, $176.2(\mathrm{C}-10), 150.0(\mathrm{C}-3), 132.0(\mathrm{C}-2), 52.6\left(-\mathrm{COOCH}_{3}\right), 46.9(\mathrm{C}-$ 4a), 45.4 (C-8a), 38.3 (C-8), 36.3 (C-4), 34.2 (C-6), 32.4 (C-11 or 12), 29.7 (C-7), 29.3 (C-5), 24.1 (C-11 or 12), 12.4 (C-9); ESIMS m/z 265.6 $[\mathrm{M}-\mathrm{H}]^{-}$(100); HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{-} 265.1450$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4}, 265.1434$).
$\Delta^{\mathbf{9}(11)} \mathbf{- 3} \beta$-Acetoxy-8-epi-sclareolide (3). To a solution of $\mathbf{1 6}(82 \mathrm{mg}$, $0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added a catalytic amount of TsOH and then $\mathrm{m}-\mathrm{CPBA}(75 \%)(110 \mathrm{mg}, 0.48 \mathrm{mmol})$. The reaction mixture was stirred for 12 h at room temperature. The resulting solution was washed with saturated aqueous NaHSO_{3}, saturated aqueous NaHCO_{3}, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was separated over a silica gel column (petroleum ether/AcOEt, $25: 1$, and then petroleum ether/AcOEt, 4:1) to afford a mixture of compounds $\mathbf{3}$ and $\mathbf{2}$ (ratio of $\mathbf{3 / 2}=5: 1$) ($33 \mathrm{mg}, 69 \%$), $\mathbf{4}(19 \mathrm{mg}, 49 \%)$, and $\mathbf{5}(3 \mathrm{mg}, 7 \%)$. Slow recrystallization of the mixture of $\mathbf{3}$ and $\mathbf{2}$ from n-hexane/acetone ($8: 1$) gave different crystal shapes, which could be manually separated to give pure $\mathbf{3}$ as colorless needle crystals and $\mathbf{2}$ as colorless cubic crystals. Compound $\mathbf{3}$ (colorless needle crystals): $\mathrm{mp} 65.5-66.8{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+211.8\left(c 0.09, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \epsilon) 240(3.12) \mathrm{nm}$; IR (KBr) $\nu_{\max }$ 2924, 1755, 1714, 1624, 1259, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 5.71(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 4.56$ $(1 \mathrm{H}, \mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, \mathrm{H}-3), 2.24(1 \mathrm{H}, \mathrm{dt}, J=11.4,3.2 \mathrm{~Hz}), 2.08$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-\right), 1.89(1 \mathrm{H}, \mathrm{dt}, J=13.1,3.3 \mathrm{~Hz}), 1.80-1.86(3 \mathrm{H}$, $\mathrm{m}), 1.71-1.79(2 \mathrm{H}, \mathrm{m}), 1.64-1.69(2 \mathrm{H}, \mathrm{m}), 1.63,1.26,0.96$, and 0.92 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 186.6,172.4,170.8$, 113.4, 86.7, 79.8, 44.3, 39.2, 37.8, 36.2, 30.3, 28.4, 27.3, 25.3, 24.1, 21.2, 16.6, 16.2; ESIMS m/z $345.1[\mathrm{M}+\mathrm{K}]^{+}(10), 329.2[\mathrm{M}+\mathrm{Na}]^{+}$ (100), $307.2[\mathrm{M}+\mathrm{H}]^{+}(20)$; HRESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 329.1716$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{4}, 329.1723$).

3 β-Hydroxy-9-epi-sclareolide (22). To a stirred solution of compound $2(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ was added magnesium turnings ($16 \mathrm{mg}, 0.67 \mathrm{mmol}$). The reaction mixture was heated and kept refluxing slowly. When Mg was consumed, a second portion of $\mathrm{Mg}(16 \mathrm{mg})$ was added; then the addition was repeated until the reaction was complete (monitored by TLC). The mixture was cooled to room temperature, and $5 \% \mathrm{HCl}(\mathrm{aq})$ was added. The resulting mixture was extracted with ethyl acetate, and the combined organic layer was washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated in vacuo. Separation of the residue via silica gel chromatography (petroleum ether/AcOEt, 4:1) yielded 22 (64 mg, 74\%) as crystals. Compound 22: mp 151.9-154.9 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}-64.3(c 0.12$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{20}{ }_{578}-66.1\left(c 0.12, \mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{20}{ }_{546}-76.5\left(c 0.12, \mathrm{CH}_{3}-\right.$ $\mathrm{OH}),[\alpha]^{20}{ }_{436}-130.4\left(c 0.12, \mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{20}{ }_{365}-212.2\left(c 0.12, \mathrm{CH}_{3}-\right.$ $\mathrm{OH})$; IR (KBr) $v_{\max } 3462,2928,1758,1739,1388,1062,946 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 3.24(1 \mathrm{H}, \mathrm{dd}, J=10.6,5.6 \mathrm{~Hz}, \mathrm{H}-3)$, $2.58(1 \mathrm{H}, \mathrm{dd}, J=17.2,13.6 \mathrm{~Hz}, \mathrm{H}-11), 2.42(1 \mathrm{H}, \mathrm{dd}, J=17.2,8.3$ $\mathrm{Hz}, \mathrm{H}-11), 2.06(1 \mathrm{H}, \mathrm{dd}, J=13.6,8.3 \mathrm{~Hz}, \mathrm{H}-9), 2.03(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7)$, $1.62-1.68(3 H, m, 1 H-6$ and $2 \mathrm{H}-2), 1.57(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16), 1.55(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7), 1.32-1.39(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-6), 1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 1.12(3 \mathrm{H}$, s, H-15), 1.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $1.05(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 0.81(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 175.3(\mathrm{C}-12), 85.8(\mathrm{C}-8), 78.6(\mathrm{C}-3)$, 56.5 (C-9), 45.6 (C-5), 38.5 (C-4), 36.8 (C-7), 36.1 (C-1), 35.8 (C-
10), 32.6 (C-11), 28.3 (C-13), 27.3 (C-16), 26.8 (C-2), 22.9 (C-15), 19.0 (C-6), 15.7 (C-14); ESIMS m/z $305.4[\mathrm{M}+\mathrm{K}]^{+}$(30), 289.4 [M $+\mathrm{Na}]^{+}(100) ;$ HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 289.1778$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{26}{ }^{-}$ $\mathrm{NaO}_{3}, 289.1774$).

3 β-Acetoxy-9-epi-sclareolide (23). (1) Starting from 2: $\mathrm{NaBH}_{4}(32$ $\mathrm{mg}, 0.8 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ was added under stirring to a solution of 2 (55 $\mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeOH}(20$ $\mathrm{mL})$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then 2 h at room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with AcOEt. The combined organic layer was washed with brine, dried over MgSO_{4}, and filtered. Concentration of the filtrate in vacuo followed by flash chromatography (petroleum ether/AcOEt 4:1) afforded 23 (54 mg, 97%).
(2) Starting from 2: To a stainless steel autoclave of 20 mL were added a solution of compound $2(50 \mathrm{mg})$ in ethyl acetate $(5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$. The autoclave was evacuated and purged with hydrogen three times, and then the pressure of hydrogen was kept at 4 MPa . The reaction mixture was stirred at room temperature for 24 h . Then, stirring was stopped and the autoclave was vented slowly. Removal of the Pd / C by filtration and concentration in vacuo gave $\mathbf{2 3}$ quantitatively.
(3) Starting from 22: To a solution of $22(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ in pyridine (2 mL) was added acetic anhydride $(0.2 \mathrm{~mL}$). The reaction mixture was stirred at room temperature for 5 h , poured into water, and extracted with ethyl acetate. The combined extracts were washed with $5 \% \mathrm{HCl}(\mathrm{aq})$, water, saturated aqueous NaHCO_{3}, and brine, dried over MgSO_{4}, and filtered. Concentration of the filtrate in vacuo followed by flash chromatography (petroleum ether/AcOEt 4:1) afforded 23 (22 mg, 95%).

Compound 23: colorless cubic crystals; mp $189.2-189.8^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{D}$ $-35.9\left(c 0.20, \mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{20}{ }_{578}-33.8\left(c 0.20, \mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{20}{ }_{546}-39.5$ $\left(c 0.20, \mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{20}{ }_{436}-71.3\left(c 0.20, \mathrm{CH}_{3} \mathrm{OH}\right),[\alpha]^{20}{ }_{365}-116.4(c$ $\left.0.20, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR $(\mathrm{KBr}) \nu_{\max } 2982,2951,1769,1756,1726,1627$, $1267,1245,1025,942 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.47(1 \mathrm{H}$, $\mathrm{dd}, J=11.5,5.1 \mathrm{~Hz}, \mathrm{H}-3), 2.58(1 \mathrm{H}, \mathrm{dd}, J=17.2,13.6 \mathrm{~Hz}, \mathrm{H}-11)$, $2.43(1 \mathrm{H}, \mathrm{dd}, J=17.2,8.2 \mathrm{~Hz}, \mathrm{H}-11), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}-\right), 2.02-$ $2.08(2 \mathrm{H}, \mathrm{m}), 1.65-1.72(3 \mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.57(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-16), 1.30-1.39(3 \mathrm{H}, \mathrm{m}), 1.21(1 \mathrm{H}, \mathrm{dd}, J=12.2,1.8 \mathrm{~Hz}), 1.15,0.93$ and 0.88 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 175.1,170.8$, $85.6,80.1,56.5,45.8,37.3,3.67,35.7,35.6,32.5,28.3,27.3,23.2$, 22.9, 21.2, 18.9, 16.8; ESIMS m/z $655.3[2 \mathrm{M}+\mathrm{K}]^{+}(5), 639.5[2 \mathrm{M}+$ $\mathrm{Na}]^{+}(60), 347.2[\mathrm{M}+\mathrm{K}]^{+}(33), 331.3[\mathrm{M}+\mathrm{Na}]^{+}(100)$; HRESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 331.1878$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaO}_{4}, 331.1880$).

3 β-Mesyloxy-9-epi-sclareolide (24). A solution of 22 ($50 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ in pyridine (2 mL) was cooled to $-5 \rightarrow 0^{\circ} \mathrm{C}$ in an ice/ NaCl bath, and then methanesulfonyl chloride $(0.05 \mathrm{~mL})$ was added. The reaction mixture was stirred at the same temperature for 2 h , and ethyl acetate was added. The mixture was washed with $5 \% \mathrm{HCl}(\mathrm{aq})$, water, saturated aqueous NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The yellow residue was separated over a silica gel column (petroleum ether/AcOEt, 4:1) to give compound 24 (62 $\mathrm{mg}, 96 \%$) as crystals. Compound 24: mp $164.9-165.8^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-35.1$ $(c 0.21, \mathrm{AcOEt}),[\alpha]^{20}{ }_{578}-38.9(c 0.21, \mathrm{AcOEt}),[\alpha]^{20}{ }_{546}-44.3(c 0.21$, $\mathrm{AcOEt}),[\alpha]^{20}{ }_{436}-78.2$ (c 0.21, AcOEt), $[\alpha]^{20}{ }_{365}-127.5$ (c 0.21, AcOEt); IR (KBr) $\nu_{\max }$ 2935, 1759, 1631, 1349, 1172, 941, $914 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.33(1 \mathrm{H}, \mathrm{dd}, J=11.3,5.2 \mathrm{~Hz}, \mathrm{H}-3)$, $3.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{3}-\right), 2.56(1 \mathrm{H}, \mathrm{dd}, J=17.1,13.7 \mathrm{~Hz}, \mathrm{H}-11), 2.43$ $(1 \mathrm{H}, \mathrm{dd}, J=17.1,8.4 \mathrm{~Hz}, \mathrm{H}-11), 1.57(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16), 1.16,1.09$, and 0.89 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 174.8,88.9$, $85.4,56.3,46.0,38.9,38.2,36.6,35.7,35.5,32.4,28.4,24.8,22.9$, $22.8,19.1,16.5$; ESIMS m/z $383.1[\mathrm{M}+\mathrm{K}]^{+}(40), 367.2[\mathrm{M}+\mathrm{Na}]^{+}$ (100); HRESIMS $m / z[\mathrm{M}+\mathrm{Na}]^{+} 367.1536$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{5} \mathrm{~S}$, $367.1550)$.

3 β-Hydroxy-9-epi-ambrox (26). (1) Starting from 24: $\mathrm{LiAlH}_{4}(33$ $\mathrm{mg}, 0.88 \mathrm{mmol}$) was added to a stirred solution of compound 24 (77 $\mathrm{mg}, 0.22 \mathrm{mmol}$) in THF (5 mL) under argon. The mixture was refluxed slowly for 2 h and then cooled to room temperature. Then, $5 \% \mathrm{HCl}-$ (aq) was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with saturated aqueous NaHCO_{3} and saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Nitromethane $(10 \mathrm{~mL})$ and then $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(19$ $\mathrm{mg}, 0.10 \mathrm{mmol}$) were directly added to the residue. This mixture was stirred at room temperature for 6 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and filtered.

The filtrate was concentrated in vacuo and purified over a silica gel column (petroleum ether/AcOEt, 4:1) to afford compound 26 (41 mg , 73%).
(2) Starting from $\mathbf{2 3}$ with the same procedure as (1), yield: 77%.

Compound 26: colorless needle crystals; $\mathrm{mp} 132.5-134.6^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}$ $-8.0\left(c 0.97, \mathrm{CHCl}_{3}\right) ;[\alpha]^{25}{ }_{578}-8.1\left(c 0.97, \mathrm{CHCl}_{3}\right) ;[\alpha]^{25}{ }_{546}-9.0(c$ $\left.0.97, \mathrm{CHCl}_{3}\right) ;[\alpha]^{25}{ }_{436}-14.6\left(c 0.97, \mathrm{CHCl}_{3}\right) ;[\alpha]^{25}{ }_{365}-21.1$ (c 0.97, CHCl_{3}); IR (KBr) $\nu_{\max } 3451,2965,2929,1462,1384,1123,1063,1037$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 3.85(1 \mathrm{H}, \mathrm{dt}, J=9.1,2.9 \mathrm{~Hz})$, $3.77(1 \mathrm{H}, \mathrm{q}, J=8.5 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{dd}, J=9.0,7.3 \mathrm{~Hz}), 1.96-2.05$ $(1 \mathrm{H}, \mathrm{m}), 1.88-1.94(1 \mathrm{H}, \mathrm{m}), 1.64-1.68(3 \mathrm{H}, \mathrm{m}), 1.56-1.62(3 \mathrm{H}, \mathrm{m})$, $1.52(1 \mathrm{H}, \mathrm{dt}, J=13.2,4.2 \mathrm{~Hz}), 1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.17(1 \mathrm{H}, \mathrm{dd}, J=$ $12.1,2.0 \mathrm{~Hz}), 1.10,1.02$, and 0.79 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 80.6,79.1,64.0,58.7,45.8,38.6,36.5,35.8,35.4,28.8$, 28.4, 27.6, 27.2, 22.9, 20.1, 15.6; EIMS m/z $252[\mathrm{M}]^{+}(3), 237[\mathrm{M}-$ $\mathrm{Me}^{+}(45), 219\left[\mathrm{M}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(19), 152 (29), 135 (80), 97 (42), 84 (35), 55 (42), 43 (100).

3 β-Mesyloxy-9-epi-ambrox (27). A mixture of 26 (50 mg, 0.20 $\mathrm{mmol})$, pyridine $(0.2 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was cooled to $-5 \rightarrow 0$ ${ }^{\circ} \mathrm{C}$ in an ice $/ \mathrm{NaCl}$ bath, and then methanesulfonyl chloride (0.05 mL) was added. The mixture was kept at $-5 \rightarrow 0^{\circ} \mathrm{C}$ for 2 h , and additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The mixture was washed with $5 \% \mathrm{HCl}(\mathrm{aq})$, water, saturated aqueous NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The yellow residue was separated over a silica gel column to give 27 ($61 \mathrm{mg}, 93 \%$). Compound 27 (pale yellow cubic crystals): mp $114.8-116.6{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-4.8\left(c 0.08, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\nu_{\max } 2925,2858,1465,1354,1334,1174,939,912,873 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.34(1 \mathrm{H}, \mathrm{dd}, J=9.2,8.0 \mathrm{~Hz}, \mathrm{H}-3), 3.86(1 \mathrm{H}$, $\mathrm{dt}, J=8.4,3.2 \mathrm{~Hz}, \mathrm{H}-12), 3.78(1 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}, \mathrm{H}-12), 3.03(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{3}-\right), 1.89-2.01(4 \mathrm{H}, \mathrm{m}), 1.38,1.14,1.06$ and 0.87 (each 3 H , $\mathrm{s}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 90.0,80.4,64.0,58.5,46.1$, $38.9,38.3,36.1,35.5,35.2,28.7,28.5,27.6,25.2,22.7,20.2,16.4$; EIMS m/z $330[\mathrm{M}]^{+}(1), 315[\mathrm{M}-\mathrm{Me}]^{+}(58), 234\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}\right]^{+}$ (15), 219 (43), 201 (5), 191 (16), 175 (10), 135 (100).
$\Delta^{2(3)}$-9-epi-Ambrox (28). To a solution of compound $27(30 \mathrm{mg}$, 0.09 mmol) in DMF (5 mL) was added anhydrous $\mathrm{LiCl}(20 \mathrm{mg}, 0.47$ $\mathrm{mmol})$. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 4 h and then cooled to room temperature. Ethyl acetate was added, and the resulting solution was washed with water three times and brine, dried over MgSO_{4}, and filtered. Evaporation in vacuo and purification over a silica gel column (n-hexane/AcOEt, $50: 1$) gave $28(17 \mathrm{mg}, 80 \%)$ as a colorless oil. Compound 28: $[\alpha]^{20}{ }_{\mathrm{D}}-4.3\left(c \quad 0.24, \mathrm{CHCl}_{3}\right),[\alpha]^{20}{ }_{578}-5.1$ (c 0.24, $\left.\mathrm{CHCl}_{3}\right),[\alpha]^{20}{ }_{546}-6.4\left(c 0.24, \mathrm{CHCl}_{3}\right),[\alpha]^{20}{ }_{436}-10.2\left(c 0.24, \mathrm{CHCl}_{3}\right)$, $[\alpha]^{20}{ }_{365}-13.6\left(c 0.24, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 2928,2866,1630,1380$, $1132,1115,1093,1055,1039,723 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta 5.46(1 \mathrm{H}$, ddd, $J=9.9,6.0,1.6 \mathrm{~Hz}, \mathrm{H}-2), 5.35(1 \mathrm{H}, \mathrm{dd}, J=9.9,2.7$ $\mathrm{Hz}, \mathrm{H}-3), 3.86(1 \mathrm{H}, \mathrm{dt}, J=8.4,2.7 \mathrm{~Hz}, \mathrm{H}-12), 3.78(1 \mathrm{H}, \mathrm{q}, J=8.4$ $\mathrm{Hz}, \mathrm{H}-12), 2.00-2.07(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-11), 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11)$, $1.69(1 \mathrm{H}, \mathrm{dd}, J=12.2,8.2 \mathrm{~Hz}, \mathrm{H}-9), 1.63(1 \mathrm{H}, \mathrm{dd}, J=16.4,6.0 \mathrm{~Hz}$, $\mathrm{H}-1), 1.54-1.60(3 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}-6$ and $2 \mathrm{H}-7), 1.50(1 \mathrm{H}, \mathrm{dd}, J=12.5,2.6$ $\mathrm{Hz}, \mathrm{H}-5), 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16), 1.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$, 0.98 and 0.88 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$ and $\mathrm{H}-14$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 150$ $\mathrm{MHz}) \delta 137.8(\mathrm{C}-3), 121.6(\mathrm{C}-2), 80.6(\mathrm{C}-8), 63.9(\mathrm{C}-12), 56.9(\mathrm{C}-9)$, 43.7 (C-5), 38.2 (C-1), 35.1 (C-10), 34.6 (C-7), 34.5 (C-4), 31.7 (C-13 or 14), 29.4 (C-11), $26.9(\mathrm{C}-16), 23.1(\mathrm{C}-15), 22.9(\mathrm{C}-13$ or 14$), 21.3$ (C-6); ESIMS m/z 257.1 [M + Na] ${ }^{+}$(90), $235.2[\mathrm{M}+\mathrm{H}]^{+}(100)$; HRESIMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 235.2059$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}, 235.2056$).
(-)-9-epi-Ambrox (7). To a stainless steel autoclave of 20 mL with a magnetic stirrer were added a solution of $\mathbf{2 8}(50 \mathrm{mg})$ in ethyl acetate $(5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$. The autoclave was evacuated and purged with hydrogen three times, and then the pressure of hydrogen was kept at 4 MPa during the entire reaction process. After 12 h , the stirring was stopped and the autoclave was vented slowly. Removal of the Pd / C by filtration and concentration in vacuo gave 7 quantitatively as a colorless oil. The spectroscopic data were the same as those published. ${ }^{2,36}$ Compound 7: $[\alpha]^{25} \mathrm{D}-6.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$ (lit. ${ }^{19 \mathrm{a}}[\alpha]^{25} \mathrm{D}$ $-6.0, ~ c ~ 1.0, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\max } 2924,2854,1463,1260,1098$, 1060, 1048, 1025, $802 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 3.85(1 \mathrm{H}$, $\mathrm{dt}, J=8.5,3.0 \mathrm{~Hz}, \mathrm{H}-12), 3.77(1 \mathrm{H}, \mathrm{q}, J=8.5 \mathrm{~Hz}, \mathrm{H}-12), 2.04(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-11), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.51-1.59(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-6,2 \mathrm{H}-7$, and $\mathrm{H}-9), 1.39-1.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-3), 1.37(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-16), 1.21-1.28(3 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-1$ and $\mathrm{H}-6), 1.19(1 \mathrm{H}, \mathrm{dd}, J=12.4,1.4$ $\mathrm{Hz}, \mathrm{H}-5), 1.15(1 \mathrm{H}, \mathrm{ddd}, J=12.8,12.8,4.3 \mathrm{~Hz}, \mathrm{H}-3), 1.10(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-15), 0.89$ and 0.82 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$ and $\mathrm{H}-14) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 80.8(\mathrm{C}-8), 64.1(\mathrm{C}-12), 59.0(\mathrm{C}-9), 46.7(\mathrm{C}-5), 42.3(\mathrm{C}-$
3), 38.7 (C-1), 36.0 (C-10), 35.8 (C-7), 33.6 (C-13 or C-14), 32.9 (C4), 28.8 (C-11), 27.7 (C-16), 22.8 (C-15), 21.8 (C-13 or C-14), 20.4 (C-6), 18.5 (C-2); EIMS m/z $236[\mathrm{M}]^{+}$(13), $221[\mathrm{M}-\mathrm{Me}]^{+}(100)$, 206 (19), 151 (6), 137 (72), 121 (15), 109 (24), 97 (31), 81 (28), 67 (30), 55 (59), 41 (69).

Acknowledgment. The authors are grateful to the National Natural Science Foundation of China (Grant 20572107), Chengdu Municipal Bureau of Science \& Technology, and the Diao Group for financial support.

Supporting Information Available: Experimental data of compounds $\mathbf{1 3}, \mathbf{1 5}, \mathbf{1 7 - 2 1}, \mathbf{2 5}$, and 29, NMR and selected HRMS spectra of compounds $\mathbf{2 - 5}, \mathbf{7}, \mathbf{1 1}$, and 13-29, and ORTEP diagrams of 2, 3, $\mathbf{1 4}, \mathbf{1 7}, \mathbf{1 9}, 21,23$, and 26 . This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Hanson, J. R. Nat. Prod. Rep. 2005, 22, 594-602, and previous reviews in this series. (b) Fraga, B. M. Nat. Prod. Rep. 2005, 22, 465-486, and previous reviews in this series. (c) Connolly, J. D.; Hill, R. A. Nat. Prod. Rep. 2005, 22, 487-503, and previous reviews in this series.
(2) (a) Ohloff, G.; Giersch, W.; Pickenhagen, W.; Furrer, A.; Frei, B. Helv. Chim. Acta 1985, 68, 2022-2029. (b) Ohloff, G. In Fragrance Chemistry; Theimer, E. T., Ed.; Academic Press: New York, 1982; pp 535-573.
(3) (a) Sunazuka, T.; Omura, S. Chem. Rev. 2005, 105, 4559-4580. (b) Jansen, B. J. M.; de Groot, A. Nat. Prod. Rep. 2004, 21, 449-477.
(4) (a) de la Torre, M. C.; García, I.; Sierra, M. A. Chem. Eur. J. 2005, 11, 3659-3667. (b) Hua, D. H.; Huang, X.-D.; Chen, Y.; Battina, S. K.; Tamura, M.; Noh, S. K.; Koo, S. I.; Namatame, I.; Tomoda, H.; Perchellet, E. M.; Perchellet, J.-P. J. Org. Chem. 2004, 69, 60656078. (c) Yang, L.; Williams, D. E.; Mui, A.; Ong, C.; Krystal, G.; van Soest, R.; Andersen, R. J. Org. Lett. 2005, 7, 1073-1076. (d) Kulciţki, V.; Ungur, N.; Gavagnin, M.; Carbone, M.; Cimino, G. Eur. J. Org. Chem. 2005, 1816-1822.
(5) (a) Arnó, M.; González, M. A.; Zaragozá, R. J. J. Org. Chem. 2003, 68, 1242-1251. (b) Roldán, E. J. A.-M.; Chahboun, R.; Bentaleb, F.; Torres, E. C.; Alvarez, E.; Haidour, A.; López, J. M. R.; Roldán, R. A.-M.; Houssame, S. E. Synlett. 2004, 2701-2704.
(6) (a) Bolster, M. G.; Jansen, B. J. M.; de Groot, A. Tetrahedron 2001, 57, 5657-5662. (b) Bolster, M. G.; Jansen, B. J. M.; de Groot, A. Tetrahedron 2001, 57, 5663-5679.
(7) (a) Alvarez-Manzaneda, E. J.; Chahboun, R.; Pérez, I. B.; Cabrera, E.; Alvarez, E.; Alvarez-Manzaneda, R. Org. Lett. 2005, 7, 14771480. (b) Alvarez-Manzaneda, E. J.; Chahboun, R.; Barranco, I.; Torres, E. C.; Alvareza, E.; Alvarez-Manzaneda, R. Tetrahedron Lett. 2005, 46, 5321-5324. (c) Moulines, J.; Bats, J.-P.; Lamidey, A.M.; Silva, N. D. Helv. Chim. Acta 2004, 87, 2695-2705. (d) Kolympadi, M.; Liapis, M.; Ragoussis, V. Tetrahedron 2005, 61, 2003-2010.
(8) (a) Utenova, B. T.; Gundersen, L.-L. Tetrahedron Lett. 2004, 45, 4233-4235. (b) Villamizar, J.; Fuentes, J.; Salazar, F.; Tropper, E.; Alonso, R. J. Nat. Prod. 2003, 66, 1623-1627.
(9) (a) Pathak, A.; Aslaoui, J.; Morin, C. J. Org. Chem. 2005, 70, 41844187. (b) Aslaoui, J.; Li, H.; Morin, C. Tetrahedron Lett. 2005, 46, 1713-1716.
(10) (a) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Alvarez-Manzaneda, R.; Chahboun, R.; Meneses, R.; Cuerva, J. M.; Aparicio, M.; Romera, J. L. Org. Lett. 2001, 3, 647-650. (b) Barrero, A. F.; Simeon, A.; Jose, F. Q. M.; Herrador, M. M.; Valdivia, M.; Jimenez, D. J. Org. Chem. 2002, 67, 2501-2508. (c) Alvarez-Manzaneda, E. J.; Romera, J. L.; Barrero, A. F.; Alvarez-Manzaneda, R.; Chahboun, R.; Meneses, R.; Aparicio, M. Tetrahedron 2005, 61, 837-844.
(11) (a) Waters, S. P.; Tian, Y.; Li, Y.-M.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127, 13514-13515. (b) Hagiwara, H.; Hamano, K.; Nozawa, M.; Hoshi, T.; Suzuki, T.; Kido, F. J. Org. Chem. 2005, 70, 2250-2255. (c) Hagiwara, H.; Takeuchi, F.; Nozawa, M.; Hoshib, T.; Suzuki, T. Tetrahedron 2004, 60, 1983-1989. (d) Deng, W.-P.; Zhong, M.; Guo, X.-C.; Kende, A. S. J. Org. Chem. 2003, 68, 74227427.
(12) (a) Boar, R. B.; Allen, J. Phytochemistry 1973, 12, 2571-2578, and references therein. (b) Phytochemical and ethnobotanical database. http://www.ars-grin.gov/duke/plants.html. (c) Srivastava, S. K.; Khan, M.; Khanuja, S. P. S. U.S. Pat. Appl. Publ. US 2004220425, 2004; Chem. Abstr. 2004, 141, 377242. (d) Kuno, N.; Shinohara, G. PCT Int. Appl. WO 2002012159, 2002; Chem. Abstr. 2002, 136, 164276.
(13) (a) Barrero, A. F.; Manzaneda, E. A.; Manzaneda, R. R. A.; Arseniyadis, R. S.; Guittet, E. Tetrahedron 1990, 46, 8161-8168. (b) Barrero, A. F.; Haídour, A.; Muñoz-Dorado, M.; Akssira, M.; Sedqui, A.; Mansour, I. Phytochemistry 1998, 48, 1237-1240.
(14) Akihisa, T.; Arai, K.; Kimura, Y.; Koike, K.; Kokke, W. C. M. C.; Shibata, T.; Nikaido, T. J. Nat. Prod. 1999, 62, 265-268.
(15) García-Granados, A.; López, P. E.; Melguizo, E.; Parra, A.; Simeó, Y. Tetrahedron 2004, 60, 3831-3845.
(16) (a) Soloway, A. H.; Considine, W. J.; Fukushima, D. K.; Gallagher, T. F. J. Am. Chem. Soc. 1954, 76, 2941-2943. (b) Nambara, T.; Fishman, J. J. Org. Chem. 1962, 27, 2131-2135. (c) Hirschmann, R.; Wendler, N. L. J. Am. Chem. Soc. 1953, 75, 2361-2364. (d) Feng, X.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2831-2836, and references therein.
(17) (a) Snowden, R. L.; Eichenberger, J.-C.; Linder, S. M.; Sonnay, P.; Vial, C.; Schulte-Elte, K. H. J. Org. Chem. 1992, 57, 955-960. (b) Barrero, A. F.; Altarejos, J.; Alvarez-Manzaneda, E. J.; Ramos, J. M.; Salido, S. J. Org. Chem. 1996, 61, 2215-2218. (c) Tanimoto, H.; Oritani, T. Tetrahedron: Asymmetry 1996, 7, 1695-1704.
(18) (a) Ohloff, G.; Vial, C.; Wolf, H. R.; Job, K.; Jégou, E.; Polonsky, J.; Lederer, E. Helv. Chim. Acta 1980, 63, 1932-1946. (b) Vial, C.; Thommen, W.; Näf, F. Helv. Chim. Acta 1989, 72, 1390-1399.
(19) (a) Paquette, L. A.; Maleczka, R. E., Jr. J. Org. Chem. 1991, 56, 912-913. (b) Kutney, J. P.; Cirera, C. Can. J. Chem. 1997, 75, 11361150.
(20) (a) Gil, M.; Haïdour, A.; Ramos, J. L. J. Agric. Food Chem. 1997, 45, 4490-4494. (b) Begum, S.; Sultana, I.; Siddiqui, B. S.; Shabeen, F.; Gilani, A. H. J. Nat. Prod. 2002, 65, 1939-1941.
(21) (a) Majumder, P. L.; Bagchi, A. Tetrahedron 1983, 39, 649-655. (b) Tkachev, A. V.; Denisov, A. Yu.; Gatilov, Y. V.; Bagryanskaya, I. Yu.; Shevtsov, S. A.; Rybalova, T. V. Tetrahedron 1994, 50, 11459-11488. (c) Ruzicka, L.; Jeger, O.; Redel, J.; Volli, E. Helv. Chim. Acta 1945, 28, 199-209.
(22) Picard, C. W.; Sharples, K. S.; Spring, F. S. J. Chem. Soc. 1939, 1045-1048.
(23) Budziarek, R.; Johnsion, J. D.; Manson, W.; Spring, F. S. J. Chem. Soc. 1951, 1093-1096.
(24) (a) Beaton, J. M.; Spring, F. S.; Stevenson, R. J. Chem. Soc. 1955, 2616-2619. (b) Budziarek, R.; Johnston, J. D.; Manson, W.; Spring, F. S. J. Chem. Soc. 1951, 3019-3026.
(25) Easton, J. D.; Spring, F. S. J. Chem. Soc. 1955, 2120-2125.
(26) Kitagawa, I.; Kitazawa, K.; Yosioka, I. Tetrahedron 1972, 28, 907921.
(27) García-Granados, A.; López, P. E.; Melguizo, E.; Moliz, J. N.; Parra, A.; Simeó, Y. J. Org. Chem. 2003, 68, 4833-4844, and references therein.
(28) (a) Manna, S.; Yadagiri, P.; Falck, J. R. J. Chem. Soc., Chem. Commun. 1987, 1324-1325. (b) Mousseron-Canet, M.; Chabaud, J.-P. Bull. Soc. Chim. Fr. 1969, 1, 308-313. (c) Autrey, R. L.; Barton, D. H. R.; Ganguly, A. K.; Reusch, W. H. J. Chem. Soc. 1961, 33133319.
(29) (a) Havinga, E.; de Kock, R. J.; Rappoldt, M. P. Tetrahedron 1960, 11, 276-284. (b) Lugtenburg, J.; Havinga, E. Tetrahedron Lett. 1969, 28, 2391-2394. (c) Gottfried, N.; Kaiser, W.; Braun, M.; Fuss, W.; Kompa, K. L. Chem. Phys. Lett. 1984, 110, 335-339.
(30) Crystallographic data for compounds 2 (CCDC-288692), 23 (CCDC288693), 14 (CCDC-288694), 19 (CCDC-288695), 3 (CCDC288696), 26 (CCDC-288697), 21 (CCDC-291362), and 17 (CCDC291363) reported in this paper have been deposited with the Cambridge Crystallographic Data Center. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk).
(31) (a) Atta-ur-Rahman; Farooq, A.; Choudhary, M. I. J. Nat. Prod. 1997, 60, 1038-1040. (b) Choudhary, M. I.; Ghulam, S.; Sami, A.; Atta-ur-Rahman. Helv. Chim. Acta 2004, 87, 2685-2693.
(32) Shing, T. K. M.; Zhu, X. Y.; Yeung, Y. Y. Chem. Eur. J. 2003, 9, 5489-5500.
(33) (a) Scheer, I.; Mosettig, E. J. Am. Chem. Soc. 1955, 77, 1820-1822. (b) Rapoport, H.; Bonner, R. M. J. Am. Chem. Soc. 1951, 73, 28722876.
(34) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Altarejos, J.; Salido, S.; Ramos, J. M. Tetrahedron 1993, 49, 10405-10412.
(35) Fujimoto, Y.; Tatsuno, T. Tetrahedron Lett. 1976, 37, 3325-3326.
(36) Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131-8140.

NP060159A

[^0]: * To whom correspondence should be addressed. Tel/Fax: +86-2885225401. E-mail: zhangg1@cib.ac.cn.
 ${ }^{\dagger}$ Chengdu Institute of Biology, Chinese Academy of Sciences.
 ${ }^{\ddagger}$ Graduate School of the Chinese Academy of Sciences, Beijing.

[^1]: ${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, CHCl_{3}, reflux; (ii) $\mathrm{CH}_{2} \mathrm{~N}_{2}$, THF, $0 \rightarrow 5{ }^{\circ} \mathrm{C}, 81 \%$; (b) $\mathrm{O}_{3}, \mathrm{CHCl}_{3}$, then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},-5 \rightarrow 0{ }^{\circ} \mathrm{C}, 85 \%$ or $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HCOOH}$, $\mathrm{CHCl}_{3}, \mathrm{rt}, 82 \%$; (c) $\mathrm{Br}_{2}, \mathrm{HBr}$ in $\mathrm{CH}_{3} \mathrm{COOH}$ (33%) (cat.), $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{rt}, 92 \%$; (d) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{TsOH}$ (cat.), rt, 87%; (e) $\mathrm{CrO}_{3} \cdot 2 \mathrm{ppyridine}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \%$; (f) $\mathrm{Ac}_{2} \mathrm{O}$, $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{TsOH}$ (cat.), $80^{\circ} \mathrm{C}, 46 \%$.

